Studying MHD and radiative processes in Sgr
نویسنده
چکیده
We present general relativistic magnetohydrodynamic (GRMHD) numerical simulations of the accretion flow around the supermassive black hole in the Galactic centre, Sagittarius A* (Sgr A∗). The simulations include for the first time radiative cooling processes (synchrotron, bremsstrahlung, and inverse Compton) selfconsistently in the dynamics, allowing us to test the common simplification of ignoring all cooling losses in the modelling of Sgr A∗. We confirm that for Sgr A∗, neglecting the cooling losses is a reasonable approximation if the Galactic centre is accreting below ∼ 10−8M yr−1 i.e. Ṁ < 10−7ṀEdd. However, above this limit, we show that radiative losses should be taken into account as significant differences appear in the dynamics and the resulting spectra when comparing simulations with and without cooling. This limit implies that most nearby low-luminosity active galactic nuclei are in the regime where cooling should be taken into account. We further make a parameter study of axisymmetric gas accretion around the supermassive black hole at the Galactic centre. This approach allows us to investigate the physics of gas accretion in general, while confronting our results with the well studied and observed source, Sgr A∗, as a test case. We confirm that the nature of the accretion flow and outflow is strongly dependent on the initial geometry of the magnetic field. For example, we find it difficult, even with very high spins, to generate powerful outflows from discs threaded with multiple, separate poloidal field loops.
منابع مشابه
Spectral Properties of Three-dimensional Magneto-hydrodynamical Accretion Flows
In spite of a large number of global three-dimensional (3D) magneto-hydrodynamical (MHD) simulations of accretion flows and jets being made recently, their astrophysical relevance for realistic situations is not well known. In order to examine to what extent the simulated MHD flows can account for the observed spectral energy distribution (SED) of Sagittarius A* (Sgr A*), for the first time we ...
متن کاملPossessions of viscous dissipation on radiative MHD heat and mass transfer flow of a micropolar fluid over a porous stretching sheet with chemical reaction
This article presents the heat and mass transfer characteristics of unsteady MHD flow of a viscous, incompressible and electrically conducting micropolar fluid in the presence of viscous dissipation and radiation over a porous stretching sheet with chemical reaction. The governing partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) by applying suitable si...
متن کاملThree-dimensional chemically reacting radiative MHD flow of nanofluid over a bidirectional stretching surface
This study deals with the three-dimensional flow of a chemically reacting magnetohydrodynamic Sisko fluid over a bidirectional stretching surface filled with the ferrous nanoparticles in the presence of non-uniform heat source/sink, nonlinear thermal radiation, and suction/injection. After applying the self-suitable similarity transforms, the nonlinear ordinary differential equations are solved...
متن کاملUnsteady MHD nonlinear radiative squeezing slip-flow of Casson fluid between parallel disks
Effect of nonlinear thermal radiation on the unsteady magnetohydrodynamic slip flow of Casson fluid between parallel disks in the presence of thermophoresis and Brownian motion effects are investigated numerically. A similarity transformation is employed to reduce the governing partial differential equations into ordinary differential equations. Further, Runge-Kutta and Newton’s methods are ado...
متن کاملMixed convection on radiative unsteady Casson ferrofluid flow due to cone with Brownian motion and thermophoresis: A numerical study
In this study, the Brownian motion and thermophoresis effects on the MHD ferrofluid flow over a cone with thermal radiation were discussed. Kerosene with the magnetic nanoparticles (Fe3O4) was considered. A set of transformed governing nonlinear coupled ordinary differential equations were solved numerically using Runge-Kutta based shooting technique. A simulation was performed by mixing ferrou...
متن کامل